Activation of Wnt/β-catenin signalling via GSK3 inhibitors direct differentiation of human adipose stem cells into functional hepatocytes
نویسندگان
چکیده
The generation of hepatocytes that are derived from human adipose stem cells (hASCs) represents an alternative to human hepatocytes for individualized therapeutic and pharmaceutical applications. However, the mechanisms facilitating hepatocyte differentiation from hASCs are not well understood. Here, we show that upon exposure to glycogen synthase kinase 3 (GSK3) inhibitors alone, the expression of definitive endoderm specific genes GATA4, FOXA2, and SOX17 in hASCs significantly increased in a manner with activation of Wnt/β-catenin signalling. Down regulation of the β-catenin expression attenuates the effect of GSK3 inhibitors on the induction of these specific genes. The cells induced using GSK3 inhibitors were directed to differentiate synchronously into hepatocyte-like cells (HLCs) after further combinations of soluble factors by a reproducible three-stage method. Moreover, hASC-HLCs induced using GSK3 inhibitors possess low-density lipoprotein uptake, albumin secretion, and glycogen synthesis ability, express important drug-metabolizing cytochrome P450 (CYP450) enzymes, and demonstrate CYP450 activity. Therefore, our findings suggest that activation of Wnt/β-catenin signalling via GSK3 inhibitors in definitive endoderm specification may represent an important mechanism mediating hASCs differentiated to functional hepatocyte. Furthermore, development of similar compounds may be useful for robust, potentially scalable and cost-effective generation of functional hepatocytes for drug screening and predictive toxicology platforms.
منابع مشابه
The Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State
Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...
متن کاملRe-activation of Wnt/β-catenin Signaling Pathway in Hair Follicle Stem Cells in Treatment of Androgenetic Alopecia
Hair loss is a common hair disorder in human population. It affects quality of life and there are ongoing attempts to find permanent treatment for this condition. But, today there is no completely safe and protective treatment for all. Hair follicle stem cells are alive, but quiescence in androgenetic alopecia and are potentially active and can proliferate and differentiate, then regenerate hai...
متن کاملTGF-β1 enhanced myocardial differentiation through inhibition of the Wnt/β-catenin pathway with rat BMSCs
Objective(s): To investigate and test the hypotheses that TGF-β1 enhanced myocardial differentiation through Wnt/β-catenin pathway with rat bone marrow mesenchymal stem cells (BMSCs).Materials and Methods: Lentiviral vectors carrying the TGF-β1 gene were transduced into rat BMSCs firstly. Then several kinds of experimental methods were u...
متن کاملNuclear Translocation of β-Catenin during Mesenchymal Stem Cells Differentiation into Hepatocytes Is Associated with a Tumoral Phenotype
Wnt/β-catenin pathway controls biochemical processes related to cell differentiation. In committed cells the alteration of this pathway has been associated with tumors as hepatocellular carcinoma or hepatoblastoma. The present study evaluated the role of Wnt/β-catenin activation during human mesenchymal stem cells differentiation into hepatocytes. The differentiation to hepatocytes was achieved...
متن کاملGlycogen synthase kinase 3 inhibitors induce the canonical WNT/β-catenin pathway to suppress growth and self-renewal in embryonal rhabdomyosarcoma.
Embryonal rhabdomyosarcoma (ERMS) is a common pediatric malignancy of muscle, with relapse being the major clinical challenge. Self-renewing tumor-propagating cells (TPCs) drive cancer relapse and are confined to a molecularly definable subset of ERMS cells. To identify drugs that suppress ERMS self-renewal and induce differentiation of TPCs, a large-scale chemical screen was completed. Glycoge...
متن کامل